Eddiwal, Amrizal Saidi, Eti Farda Husin and Azwar Rasyidin


Symbiotic relationships between arbuscular mycorrhizal fungi (AMF) and plants can increase the capacity of plants to absorb nutrients and water from the soil by exploring micropores not accessible to plant roots. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. Recent discoveries indicate that AMF hyphae containing glomalin as glycoproteins and function unitinge the soil particles to form stable soil aggregates. Glomalin acts as an adhesive (glue) produced by AMF symbiosis with the host plant. The AMF is capable of taking nitrogen and other nutrients from a source of organic materials to produce glomalin which is transferred to the host plant. The study was conducted using nitrogen from forage materials of Tithonia (Tithonia difersifolia) which the AMF needs to produce glomalin. This study assess the need for organic N by AMF to the mycorrhizal growth effect and its effects on glomalin. The study use sterile medium sand and zeolite mixture (w/w 1:1) in pot culture experiments with the corn as the host. For treatments using N derived from Tithonia are five doses, namely 0, 10, 20, 30, and 40 mg of N Tithonia each pot. At  the time of planting, the corn roots inoculated with AMF spores of the two species, namely Glomus luteum and Glomus versiforme. We show that a positive mycorrhizal growth response (MGR) was observed only in the dose of range 20 to 30 mg N. This response did not appear to be affected by high nitrogen supply. Our results also show that in Glomus luteum at the dose of 20 mg N produce glomalin highest, namely 2.60 mg.g-1 in the planting medium. Glomus versiforme has produced glomalin is 2.38 mg.g-1 at the dose of 30 mg N. The AMF species did not significantly affect the results of glomalin, while the use of N from forage materials of Tithonia significantly influenced the production of glomalin.


glomalin, glycoprotein; mycorrhizal growth response; symbiotic

Full Text:



Antibus, R.K., C. Lauber, R.L. Sinsabaugh, and D.R. Zak. 2006. Responses of Bradford-reactive soil protein to experimental nitrogen addition in three forest communities in northern lower Michigan. Plant Soil. 288:173-187.

Balzergue, C., V. Puech-Pages, G. Becard and S.F. Rochange (2011). The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany. 62 : 1049 – 1060.

Balzergue, C., M. Chabaud, D.G. Barker, G. Becard and S.F. Rochange (2013). High phosphate reduces host ability to devvelop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Frontiers in Plant Science, 4 : 1-15. doi: 10.3389/fpls2013.00426.

Breuillin F, J. Schramm, M. Hajirezaei, A. Ahkami and P. Favre (2010). Phosphate systematically inhibits development of arbuscular mycorrhiza in petunia hybrida and represes genes involved in mycorrhizal functioning. Plant Journal. 64 : 1002-1017.

Bronick, C. J dan Lal, R. (2005). Soil structure and management : a review. Goederma, 124 : 3-22.

Cappellazzo, G. Laufranco L. Lanfranco L. Fitz M. Wipf D. dan Bonfante P. 2008. Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiologist. 147 : 429-437.

Carbonnel, S. and C. Gutjahr (2014). Control of arbuscular mycorrhiza development by nutient signals. Frontiers in Plant Science, 5 : 1-5, doi:10.3389/fpls.2014.00462.

Curaqueo, G. E. Acevedo, P. Cornejo, A. Sequel, R. Rubio and F. Borie. (2010). Tillage effect on soil organik matter mycorrhizal hyphae and aggregates in a Mediterranean agroecosystem. R. C. Suelo Nutr.. Veg. 10 (1) : 12 - 21.

Driver, J. D., W. E. Holben and M. C. Rillig. (2005). Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry. 37 : 101 - 106.

Eddiwal, A. Saidi, Ismon, L., E.F. Husin and A. Rasyidin (2014). Potential selection of arbuscular mycorrhizal fungi (AMF) indigenous Ultisol through the production of glomalin. Jurnal Tanah Tropika, 19 (3) : (September 2014).

Fellbaum, C.R., J.A. Mensah, P.E. Pfeffer, E.T. Kiers and H. Bucking (2012). The role of carbon in fungal nutrient uptake and transport. Plant Signaling & Behavior 7:11. 1509-1512.

Giovannetti, M and Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84 : 489 - 500.

Govindarajulu, M. Pfeffer P. E. Jin H. Abubaker J. Douds D. D. Allen J. W. Bucking H. Lammers P. J. dan Hill Y. S. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature. Vol. 435 : 819-823.

Guether, M. Neuhauser B. Belestrini R. Dynouski M. Ludewig U dan Bonfante P. 2009. A mycorrhizal specific ammonium transporter from lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiology. Vol. 150 : 73-83.

Hodge, A. Campbell C. D. dan Fitter A. H. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature. Vol. 413 : 297-299.

Hodge, A. and A. H. Fitter. 2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organik meterial has implications for N cycling. PANAS. 107 (31) : 13754 – 13759.

Hoorman J. J., J. C. de Moraes (Juca) Sa and R. Reader. 2011. The Biology of Soil Compaction. American Society of Agronomy. Crops and Soils Magazine (July-August 2011) : 4 - 10.

Kobae, Y. Tamura Y. Takai S. Banba M. dan Hata S. 2010. Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol. 51 (9) : 1411-1415.

Kormanik PP., and McGraw AC. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In: Schenk NC, ed. Methods and principals of mycorrhizal research. St, Paul, USA: American Phytopathological Society, 37-46.

Leigh J., Hodge A., and Fitter A. H. 2009. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist, 181: 199-207.

Lovelock, C.E., S.F. Wright, D.A. Clark, and R.W. Ruess. 2004a. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. Journal of Ecology, Vol. 92 : 278 - 287.

Lovelock, C.E., S.F. Wright, and K.A. Nichols. 2004b. Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: an example from a tropical rainforest soil. Soil Biol. Biochem. 36:1009-1012.

Nichols, K.A. and S.F. Wright. 2004. Contributions of fungi to soil organic matter in agroecosystems. p. 179-198. In F. Magdoff and R.R. Weil (eds.), Soil Organic Matter in Sustainable Agriculture. CRC Press, Florida.

Nouri, E., F. Breuillin, U. Feller and D. Reinhardt (2014). Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in petunia hybrida. Plos One, 9(3): 1-14. doi:10.1371/journal.pone.0090841.

Osaki, M., T. Watanabe and T. Tadano. 1997. Beneficial effect of aluminum on growth of plants adapted to low pH soils. Soil Science Plant Nutr. 43 (3) 551 - 563.

Rillig, M. C., S. F. Wright, K. A. Nichols, W. F. Schmidt and M. S. Torn. 2001. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical rain forest. Plant and Soil. 233 : 167-177.

Rillig, M. C. 2004. Arbuscular mycorrhizae, glomalin and soil aggregation. Can. J. Soil Sci. 84 : 355 - 363.

Rosier, C. L., J.S. Piotrowski, A.T. Hoye and M.C. Rillig (2008). Intraradical protein and glomalin as a tool for quantifying arbuscular mycorrhizal root colonization. Pedobiologia 52:41-50.

Six, J., E. T. Elliott and K. Paustian. 2000. Soil structure and soil organic matter : II. A normalized stability index and the effect of mineralogy. Soil Science Soc. Am. J. 64 : 1042-1049.

Subowo, G. 2010. Strategi efisiensi penggunaan bahan organik untuk kesuburan dan produktivitas tanah melalui pemberdayaan sumberdaya hayati tanah. Jurnal Sumberdaya Lahan Vol. 4 (1) : 13 - 25.

Tian, C., B. Kasiborski, R. koul, P.J. Lammers, H. Bucking and Y. Shachar-Hill (2010). Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: Gene characterization and the coordination of expression with nitrogen flux. Plant Physiology 153:1175-1187.

USDA_Bio-Rad Bradford Total Protein Assay with Sodium Pyrophosphate Modification. Authors (Bradford, 1976; Nichols and Wright, 2004 & Wright et al., 2006) [Online]. Available at

USDA_GLOMALIN EXTRACTION-USDA. Glomalin Extraction with Sodium Pyrophosphate. Authors (Rillig, 2004; Rosier et al., 2007; and Rillig, 2003; Wright et al., 1996; Wright and Jawson, 2001; Wright, Nichols, & Schmidt, 2006; Wright & Upadhyaya, 1996; & Wright & Upadhyaya, 1998) [Online]. Available at Glomalin%20Extraction.pdf.

Wright, S. F and A. Upadhyaya. 1996. Extraction of an abundant an unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Science. 161 (9) : 575-586.

Wright, S. F. and A. Upadhyaya. 1998. A survey of soil for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil. 98 : 97 - 107.

Wright, S. F., M. Franke-Snyder, J. B. Morton and A. Upadhyaya. 1996. Time course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil. 181 : 193-203.

Wright, S.F. and A. Upadhyaya. 1999. Quantification of arbuscular mycorrhizal activity by the glomalin concentration on hyphae. Mycorrhiza. 8:283-285.

Wright, S. F., K. A. Nichols, L. Jawson, L. McKenna and A. Almendras. 2001. Glomalin-A manageable soil glue. Soil Science Society of America Special publication Book Chapter. 21 October 2001.

Wu, Q.S., S. Wang, M.Q. Cao, Y.N. Zou and Y.X. Yao (2014). Tempo-spatial distribution and related functionings of root glomalin and glomalin-related soil protein in a citrus rhizosphere. J. Anim. Plant Sci. 224 (1): 245-251.


  • There are currently no refbacks.

IJAC: International Journal of Agricultural Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.View My Stats